
 [Gaur, 1(8): Oct., 2012]

http: // www.ijesrt.com (C) International Journal of Engineering

IJESRT
INTERNATIONAL JOURNA

Software Metrics Evaluation Using Various Lines Of Code And Function Point

*1,2 Acropolis Institute of Technology & Research

This paper describes the major characteristics of software engineering such as Maintainability, Reliability,
Complexity, Understandability, Reusability and Testability. These characteristics measure by some software
metrics. There are many software metrics
maintainability, Reliability, Complexity and Reusability of the software. Such characteristics can be measured with
the help of Coupling, Cohesion, Cyclomatic Complexity, Inherita
These characteristics are used to improve the quality, reliability and understandability of the software and reduced
the complexity and cost of the software.

Keywords: Function Point Matrices, Testability,

Introduction
Object-oriented design and development are popular
concepts in today's software development
environment. There is a general shift in the industry
from the structured (traditional) programming and
development environment to an object
paradigm. If organizations wish to make a successful
change, they need the appropriate metrics for this
new paradigm.
Software metrics are necessary for any organization
serious about assessing and improving its
development process as well as the quality of its
products. Developers need to assess the "ileitis" of
the system such as reliability, maintainability,
reusability, etc. These attributes cannot be evaluated
without first being measured. A key element of any
engineering process is measurement. Measures are
used to better understand the attributes of the model
that we create. But, most important, we use
measurements to assess the quality of the engineered
product or the process used to build it.

S. NO. METRIC OBJECT-ORIENTED

1 Response for a class (RFC)

2 Number of Attributes per Class (NOA)

3 Number of Methods per Class (NOM)

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Software Metrics Evaluation Using Various Lines Of Code And Function Point
Metrics

Avinash Gaur*1, Anurag Punde2
Acropolis Institute of Technology & Research, Indore, India

Abstract
This paper describes the major characteristics of software engineering such as Maintainability, Reliability,
Complexity, Understandability, Reusability and Testability. These characteristics measure by some software
metrics. There are many software metrics but in this paper our emphasis on those software metrics, which effects the
maintainability, Reliability, Complexity and Reusability of the software. Such characteristics can be measured with
the help of Coupling, Cohesion, Cyclomatic Complexity, Inheritance, and Comment Percentage and size metrics.
These characteristics are used to improve the quality, reliability and understandability of the software and reduced
the complexity and cost of the software.

: Function Point Matrices, Testability, software Metrics.

oriented design and development are popular
concepts in today's software development
environment. There is a general shift in the industry
from the structured (traditional) programming and
development environment to an object-oriented

rganizations wish to make a successful
change, they need the appropriate metrics for this

Software metrics are necessary for any organization
serious about assessing and improving its
development process as well as the quality of its

s. Developers need to assess the "ileitis" of
the system such as reliability, maintainability,
reusability, etc. These attributes cannot be evaluated
without first being measured. A key element of any
engineering process is measurement. Measures are

o better understand the attributes of the model
that we create. But, most important, we use
measurements to assess the quality of the engineered

Software developers need to explicitly state the
relation between the different metrics measuring the
same aspect of software. software, we need to
identify the necessary metrics that provide useful
information, otherwise the managers will be lost into
so many numbers and the purpose of metrics would
be lost. Since metrics are crucial source of
information for decision making
A measure, in general, is the assignment of a number
to an entity for the purpose of characterizing a
specific attribute of the entity. In software, there are
three categories of entities in which a
attributes fall: processes, products, and resources.
The measures described in this paper fall into the
category of product metrics, that is, metric, that
measure an attribute of a specific software artifact
like a design or code.
There are number of metrics proposed in literature
such as coupling, cohesion, information hiding,
inheritance, size metrics etc. Our aim is to find out all
these metrics are independent or we can take a subset
from them.

 ATTRIBUTE SOURCES

Class [Chidamber94] [1][2]

Number of Attributes per Class (NOA) Class [Henderson96] [2]

Number of Methods per Class (NOM) Class [Henderson96][3]

ISSN: 2277-9655

Sciences & Research Technology[422-428]

ENCES & RESEARCH

Software Metrics Evaluation Using Various Lines Of Code And Function Point

This paper describes the major characteristics of software engineering such as Maintainability, Reliability,
Complexity, Understandability, Reusability and Testability. These characteristics measure by some software

but in this paper our emphasis on those software metrics, which effects the
maintainability, Reliability, Complexity and Reusability of the software. Such characteristics can be measured with

nce, and Comment Percentage and size metrics.
These characteristics are used to improve the quality, reliability and understandability of the software and reduced

Software developers need to explicitly state the
the different metrics measuring the

same aspect of software. software, we need to
identify the necessary metrics that provide useful
information, otherwise the managers will be lost into
so many numbers and the purpose of metrics would

ics are crucial source of

A measure, in general, is the assignment of a number
to an entity for the purpose of characterizing a
specific attribute of the entity. In software, there are
three categories of entities in which all measurable
attributes fall: processes, products, and resources.
The measures described in this paper fall into the
category of product metrics, that is, metric, that
measure an attribute of a specific software artifact

umber of metrics proposed in literature
such as coupling, cohesion, information hiding,
inheritance, size metrics etc. Our aim is to find out all
these metrics are independent or we can take a subset

OURCES

[Chidamber94] [1][2]

[Henderson96] [2]

[Henderson96][3]

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

4 Weighted Methods per Class (WMC) Class [Chidamber94] [1]

5 Coupling between Objects (CBO) Coupling [Chidamber94] [1]

6 Data Abstraction Coupling (DAC) Coupling [Henderson96] [3]

7 Message Passing Coupling (MPC) Coupling [Henderson96] [3]

8 Coupling Factor (CF) Coupling [Harrison98] [4]

9 Lack of Cohesion (LCOM) Cohesion [Chidamber94] [1]

10 Tight Class Cohesion (TCC) Cohesion [Braind99] [5][6] [7]

11 Loose Class Cohesion (LCC) Cohesion [Braind99] [5][6][7]

12 Information based Cohesion (ICH) Cohesion [Lee95] [8]

13 Method Hiding Factor (MHF) Information Hiding [Harrison98] [4]

14 Attribute Hiding Factor (AHF) Information Hiding [Harrison98] [4]

15 Number of Children (NOC) Inheritance [Chidamber94] [1]

16 Depth of Inheritance (DIT) Inheritance [Chidamber94] [1]

17 Method Inheritance Factor (MIF) Inheritance [Harrison98] [4]

18 Attribute Inheritance Factor (AIF) Inheritance [Harrison98] [4]

19 Number of Methods Overridden by a subclass (NMO) Polymorphism [Henderson96] [3]

20 Polymorphism Factor (PF) Polymorphism [Harrison98] [4]

21 Reuse ratio Reuse Reuse [Henderson96] [3]

22 Specialization ratio Reuse Reuse [Henderson96] [3]

23 Cyclomatic complexity(CC) Traditional [Mc Cabe] [9][10]

24 Comment percentage Traditional [Mc Cabe] [9][10]

25 Size Traditional [Fenton96][11]

Criteria for Metrics Evolution
While metrics for the traditional functional
decomposition and data analysis design approach
measure the design structure and/or data structure

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

independently, object-oriented metrics must be able
to focus on the combination of function and data as
an integrated object . The evaluation of the utility of a
metric as a quantitative measure of software quality
was based on the measurement of a software quality
attribute. The metrics selected, however, are useful in
a wide range of models. The object-oriented metric
criteria, therefore, are to be used to evaluate the
following attributes:
� Efficiency - Are the constructs efficiently

designed?
� Complexity - Could the constructs be used more

effectively to decrease the architectural
complexity?
� Understandability - Does the design increase

the psychological complexity?
� Reusability - Does the design quality support

possible reuse?
� Testability/Maintainability - Does the structure

support ease of testing and changes?

Metrics Definition And Applications Methods
In an object-oriented system, traditional metrics are
generally applied to the methods that comprise the
operations of a class. A method is a component of an
object that operates on data in response to a message
and is defined as part of the declaration of a class.
Methods reflect how a problem is broken into
segments and the capabilities other classes expect of
a given class. Two traditional metrics are discussed
here: cyclomatic complexity and size (line counts).

METRIC 1: Cyclomatic Complexity (CC)
Cyclomatic complexity (McCabe) is used to evaluate
the complexity of an algorithm in a method. A
method with a low cyclomatic complexity is
generally better, although it may mean that decisions
are deferred through message passing, not that the
method is not complex. Cyclomatic complexity
cannot be used to measure the complexity of a class
because of inheritance, but the cyclomatic complexity
of individual methods can be combined with other
measures to evaluate the complexity of the class. In
general, the cyclomatic complexity for a method
should be below ten, indicating decisions are deferred
through message passing. Although this metric is
specifically applicable to the evaluation of quality
attribute Complexity, it also is related to all of the
other attributes.

Figure-1 Title

Figure 1 shows a method with a low cyclomatic
complexity is generally better. This may imply
decreased testing and increased understandability or
that decisions are deferred through message passing,
not that the method is not complex. Cyclomatic
complexity cannot be used to measure the complexity
of a class because of inheritance, but the cyclomatic
complexity of individual methods can be combined
with other measures to evaluate the complexity of the
class. Although this metric is specifically applicable
to the evaluation of complexity, it also is related to all
of the other attributes.

METRIC 2: Size
Size of a method is used to evaluate the ease of
understandability of the code by developers and
maintainers. Size can be measured in a variety of
ways. These include counting all physical lines of
code, the number of statements, and the number of
blank lines. Lines of Code (LOC) count all lines.
Non-comment Non-blank (NCNB) is sometimes
referred to as Source Lines of Code and counts all
lines that are not comments and not blanks
Executable Statements (EXEC) is a count of
executable statements regardless of number of
physical lines of code. For example, in FORTRAN
and IF statement may be written:
IF X=3 THEN Y=0
LOC = 3
NCNB = 3
EXEC = 1
Executable statements is the measure least influenced
by programmer or language style. Executable
statements evaluate project size. Thresholds for
evaluating the size measures vary depending on the
coding language used and the complexity of the

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

method. However, since size affects ease of
understanding, routines of large size will always pose
a higher risk in the attributes of Understandability,
Reusability, and Maintainability.

METRIC 3: Comment Percentage
The line counts done to compute the Size metric can
be expanded to include a count of the number of
comments, both on-line (with code) and stand-alone.
The comment percentage is calculated by the total
number of comments divided by the total lines of
code less the number of blank lines. It has found a
comment percentage of about 30% is most effective.
Since comments assist developers and maintainers,
this metric is used to evaluate the attributes of
Understandability, Reusability, and Maintainability.

Comment percentage=Total number of comments
(Total lines of code-Number of blank
spaces)

OBJECT-ORIENTED Specific Metrics
As discussed, many different metrics have been
proposed for object-oriented systems. The object-
oriented metrics that were chosen to measure
principle structures that, if improperly designed,
negatively affect the design and code quality
attributes.
The selected object-oriented metrics are primarily
applied to the concepts of classes, coupling, and
inheritance. For some of the object-oriented metrics
discussed here, multiple definitions are given, since
researchers and practitioners have not reached a
common definition or counting methodology. In
some cases, the counting method for a metric is
determined by the software analysis package being
used to collect the metrics.

A Class
A class is a template from which objects can be
created. This set of objects share a common structure
and a common behavior manifested by the set of
methods. Three class metrics described here measure
the complexity of a class using the class’s methods,
messages and cohesion.

 A.1 Method
A method is an operation upon an object and is
defined in the class declaration.

METRIC 4: Weighted Methods per Class (WMC)
The WMC is a count of the methods implemented
within a class or the sum of the complexities of the
methods (method complexity is measured by
Cyclomatic complexity). The second measurement is
difficult to implement since not all methods are

accessible within the class hierarchy due to
inheritance. The number of methods and the
complexity of the methods involved is a predictor of
how much time and effort is required to develop and
maintain the class. The larger the number of methods
in a class, the greater the potential impact on children
since children inherit all of the methods defined in a
class. Classes with large numbers of methods are
likely to be more application specific, limiting the
possibility of reuse. This metric measures
understandability, maintainability, and reusability.
To calculate the complexity of a class, the specific
complexity metric that is chosen (e.g., cyclomatic
complexity) should be normalized so that nominal
complexity for a method takes on value 1.0.

Figure-2: Class Diagram of BANK

Consider a class K1, with methods M1… Mn that are
defined in the class. Let C1 ….Cn be the complexity
of the methods [Chidamber94].
 n
 WMC = ΣCi
 i=1
If all method complexities are considered to be unity,
then WMC = n, the number of methods in the class.
In Figure 2, WMC for BANK is 3 (considering each
method complexity to be unity).

A.2 Message
A message is a request that an object makes of
another object to perform an operation. The operation
executed as a result of receiving a message is called a
method. The next metric looks at methods and
messages within a class.

METRIC 5: Response for a Class (RFC) (size
metrics)
The RFC is the carnality of the set of all methods
that can be invoked in response to a message to an
object of the class or by some method in the class.

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

This includes all methods accessible within the class
hierarchy. This metric looks at the combination of the
complexity of a class through the number of methods
and the amount of communication with other classes.
The larger the number of methods that can be
invoked from a class through messages, the greater
the complexity of the class. If a large number of
methods can be invoked in response to a message, the
testing and debugging of the class becomes
complicated since it requires a greater level of
understanding on the part of the tester. A worst case
value for possible responses will assist in the
appropriate allocation of testing time. This metric
evaluates Understandability, Maintainability, and
Testability.

Figure-3: Class Diagram of Company

The response set of a class (RFC) is defined as set of
methods that can be potentially executed in response
to a message received by an object of that class. It is
given by RFC=|RS|, where RS, the response set of
the class, is given by
RS= Mi U all j{R ij}
Where Mi = set of all methods in a class (total n) and
Ri = {Rij} = set of methods called by Mi.
In Figure 3, class Company has two functions
Get_Data and Display_Data which call methods
Client::Get_data1 (), Department::Get_data1(), Client
:: Display_Data1(), Department :: Display_Data1().
RS = {Company:: Get_Data, Company ::
Display_Data, Company :: Delete_Data} U
{Client::Get_Data1, Client:: Display_Data1} U
{Department :: Get_Data1, Department::
Display_Data1 }
RFC=7

A.3 Cohesion
Cohesion is the degree to which methods within a
class are related to one another and work together to

provide well-bounded behavior. Effective object-
oriented designs maximize cohesion since it
promotes encapsulation. The third class metrics
investigates cohesion.

METRIC 6: Lack of Cohesion of Methods
(LCOM)
LCOM measures the degree of similarity of methods
by data input variables or attributes (structural
properties of classes. Any measure of separateness of
methods helps identify flaws in the design of classes.
There are at least two different ways of measuring
cohesion:
1. Calculate for each data field in a class what
percentage of the methods use that data field.
Average the percentages then subtract from 100%.
Lower percentages mean greater cohesion of data and
methods in the class.
2. Methods are more similar if they operate on the
same attributes. Count the number of disjoint sets
produced from the intersection of the sets of
attributes used by the methods.
High cohesion indicates good class subdivision. Lack
of cohesion or low cohesion increases complexity,
thereby increasing the likelihood of errors during the
development process. Classes with low cohesion
could probably be subdivided into two or more
subclasses with increased cohesion. This metric
evaluates Efficiency and Reusability.
Consider a class C1 with n methods M1, M2…., Mn.
Let (Ij) = set of all instance variables used by method
Mi. There are n such sets {I1} … {In}.

Figure-4: Class Diagram of BANK

Let,P {(I I) | I I 0} and Q{((I I) | I I 0} = , j i ∩ j = =
, j i ∩ j ≠ i i . If all n sets{(I1} ... (In)} are 0 then P=0
LCOM= | P | - | Q |, if | P | >| Q |
=0 otherwise
In Figure 4, there are four methods M1, M2, M3 and
M4 in class BANK.
I1= {Acc_Id, Cust_Id, Cust_Name, Acc_No,
Bank_Name}
I2= {Cust_id}
I3= {Bank_Name}

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

I4= {Cust_Name}
I1 ∩I2, I1 ∩I3, I1 ∩I4 are non-null but I2 ∩I3,
I2 ∩I4, I3 ∩I4 are null sets.
LCOM is 0 if numbers of null intersections are not
greater than number of non-null intersections. Hence
LCOM in this case is 0 [|P|=|Q|=3]. Thus a positive
high value of LCOM implies that classes are less
cohesive. So a low value of LCOM is desirable.

A.4 Coupling
The degree to which components depend on one
another. Classes (objects) are coupled three ways:
1. When a message is passed between objects, the
objects are said to be coupled.
2. Classes are coupled when methods declared in one
class use methods or attributes of the other classes.
3. Inheritance introduces significant tight coupling
between super classes and their subclasses.
Since good object-oriented design requires a balance
between coupling and inheritance, coupling measures
focus on non-inheritance coupling. The next object-
oriented metric measures coupling strength.

METRIC 7: Coupling Between Object Classes
(CBO)
CBO is a count of the number of other classes to
which a class is coupled. It is measured by counting
the number of distinct non-inheritance related class
hierarchies on which a class depends. Excessive
coupling is detrimental to modular design and
prevents reuse. The more independent a class is, the
easier it is reuse in another application. The larger the
number of couples, the higher the sensitivity to
changes in other parts of the design and therefore
maintenance is more difficult. Strong coupling
complicates a system since a module is harder to
understand, change or correct by itself if it is
interrelated with other modules. Complexity can be
reduced by designing systems with the weakest
possible coupling between modules. This improves
modularity and promotes encapsulation. CBO
evaluates Efficiency and Reusability.
In Figure 5, Company class contains declarations of
instances of the classes Client and Department. The
Company class delegates its Client and Department
issues to instances of the Client and Department
classes. The value of metric CBO for class Company
is 2 and for class Client and Department is zero.

Figure-5: Class Diagram of Company

B Inheritance
Another design abstraction in object-oriented systems
is the use of inheritance. Inheritance is a type of
relationship among classes that enables programmers
to reuse previously defined objects including
variables and operators. Inheritance decreases
complexity by reducing the number of operations and
operators, but this abstraction of objects can make
maintenance and design difficult. The two metrics
used to measure the amount of inheritance are the
depth and breadth of the inheritance hierarchy.

METRIC 8: Depth of Inheritance Tree (DIT)
The depth of a class within the inheritance hierarchy
is the maximum length from the class node to the
root of the tree and is measured by the number of
ancestor classes. The deeper a class is within the
hierarchy, the greater the number methods it is likely
to inherit making it more complex to predict its
behavior. Deeper trees constitute greater design
complexity, since more methods and classes are
involved, but the greater the potential for reuse of
inherited methods. A support metric for DIT is the
number of methods inherited (NMI). This metric
primarily evaluates Efficiency and Reuse but also
relates to Understandability and Testability.
In Figure 6, DIT for TotalEmp class is 2 as it has 2
ancestor classes Domestic/International and
Company.
DIT for Domestic and International class is 1 as it has
one ancestor class Company.

 [Gaur, 1(8): Oct., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[422-428]

Figure-6: Class Diagram of Company

METRIC 9: Number of Children (NOC)
The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy. It is
an indicator of the potential influence a class can
have on the design and on the system. The greater the
number of children, the greater the likelihood of
improper abstraction of the parent and may be a case
of misuse of sub classing. But the greater the number
of children, the greater the reusability since
inheritance is a form of reuse. If a class has a large
number of children, it may require more testing of the
methods of that class, thus increase the testing time.
NOC, therefore, primarily evaluates Efficiency,
Reusability, and Testability.
In figure-5, NOC for Class Company is 2.

Summary
In this paper we have shown the use of different
matrices to properly understand and effectively
increase the quality of the software. We have created
own programs and try to find the complexity that
arises in the quality measurement. The matrices are
the essential part in the software industries that helps
us to judge the quality of the product before
implementing it. All the matrices that were proposed
by different researchers can be used efficiently to
assure the quality of the product. Not all the matrices
are required. It depends on the type of software that
we need to evaluate. The new technologies that are
arising in the market are supposed to evaluate by the
use of matrices. So, in the next paper we will try to
implement software that can measure the quality of
the product and tell use the appropriate steps if we
fail to achieve the quality

References

[1] S.R.Chidamber and C.F.Kamerer, A metrics
Suite for Object-Oriented Design. IEEE
Trans. Software ngineering, vol. SE-20,
no.6, 476-493, 1994.

[2] Shyam R. Chidamber, Chris F. Kemerer, A
METRICS SUITE FOR OBJECT
ORIENTED DESIGN, 1993

[3] B.Henderson-sellers, Object-Oriented
Metrics, Measures of Complexity. Prentice
Hall, 1996.

[4] R.Harrison, S.J.Counsell, and R.V.Nithi, An
Evaluation of MOOD set of ObjectOriented
Software Metrics. IEEE Trans. Software
Engineering, vol. SE-24, no.6, pp. 491-496
June1998.

[5] L.Briand, W.Daly and J. Wust, Unified
Framework for Cohesion Measurement in
Object-Oriented Systems. Empirical
Software Engineering, 3 65-117, 1998

[6] L.Briand, W.Daly and J. Wust, A Unified
Framework for Coupling Measurement in
Object-Oriented Systems. IEEE
Transactions on software Engineering, 25,
91-121,1999.

[7] L.Briand, W.Daly and J. Wust, Exploring
the relationships between design measures
and software quality. Journal of Systems and
Software, 5 245-273, 2000.

[8] Y.Lee, B.Liang, S.Wu and F.Wang,
Measuring the Coupling and Cohesion of an
Object-Oriented program based on
Information flow, 1995.

[9] McCabe & Associates, McCabe Object
Oriented Tool User’s Instructions, 1994.

[10] McCabe, T.J. "A Complexity Measure."
IEEE Transactions on Software Engineering
2, 4 (April 1976): 308-320.

[11] [Fenton96] N.Fenton et al, Software
Metrics: A Rigorous and practical approach.
International Thomson Computer Press,
1996.

[12] [Venugopal97] K.R. Venugopal, Rajkumar,
T.Ravishankar, Mastering C++, Tata
McGraw Hill,1997.

